A GENERALIZATION OF FUZZY SEMI-PRE OPEN SETS.

Dr. K. Bageerathi*

Abstract

The authors introduced and studied fuzzy \mathbb{C} -closed sets in fuzzy topological space where $\mathbb{C}:[0,1] \to [0,1]$ is a complement function. Let X be a non empty set. For any fuzzy subset λ of X, the complement \mathbb{C} λ of λ is defined to be \mathbb{C} λ (x)= \mathbb{C} (λ (x)) for every $x \in X$. This \mathbb{C} is called a complement function and \mathbb{C} λ is called the complement of λ with respect to \mathbb{C} . Using this, we introduced fuzzy \mathbb{C} -regular closed sets, fuzzy \mathbb{C} - α -closed sets, fuzzy \mathbb{C} -semi-closed sets and fuzzy \mathbb{C} -pre-closed sets and discussed their basic properties. The purpose of this paper is to introduce fuzzy \mathbb{C} - semi-pre-closed sets and to discuss their properties.

MSC 2010: 54A40, 03E72.

Key words: Fuzzy C -pre open, fuzzy C -pre closed, Fuzzy C -semi open, Fuzzy C -semi open, Fuzzy C -semi open, fuzzy C -semi-pre closed, fuzzy C -semi-pre continuity and fuzzy topology.

* Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, India

1. Introduction

S. S. Thakur, S.Singh [4] introduced the notion of fuzzy semi-pre open and fuzzy semi-pre closed. And their characterizations are studied by using the complement function $\lambda'(x) = 1 - \lambda(x)$, where the complement using is the standard complement function $\mathbf{C}(x) = 1 - x$.

In this paper fuzzy ${\bf C}$ -semi-pre open and fuzzy ${\bf C}$ -semi-pre closed sets are introduced and characterized by using the arbitrary complement function.

In section 2, the basic concepts are discussed. In section 3, we introduce the notion of fuzzy \mathbb{C} - semi- pre open and studied some of their properties using fuzzy \mathbb{C} - closure, where \mathbb{C} :[0, 1] \rightarrow [0, 1] is a complement function.

In section 4, we give the notion of fuzzy \mathbb{C} - semi- pre closed and studied some of their properties using fuzzy \mathbb{C} - closure, where $\mathbb{C}:[0,1] \to [0,1]$ is a complement function.

In section 5, we define the concept of fuzzy C –semi-pre interior and fuzzy C –semi-pre closure and investigate some of their basic properties.

In section 6, we give the concept of fuzzy C -semi -pre continuous functions.

Throughout this paper we assume that (X,τ) is a fuzzy topological space in the sense of Chang[7]. Let λ and μ denote the fuzzy subsets of X. For a fuzzy set λ in X, the operators $Int \lambda$ and $Cl_{\mathbb{C}} \lambda$ denote the fuzzy interior and fuzzy \mathbb{C} - closure of λ respectively.

2. Preliminaries

Definition 2.1 [Definition 2.2, [2]]

Let $C : [0, 1] \rightarrow [0, 1]$ be a complement function. If λ is a fuzzy subset of (X, τ) then the complement C λ of a fuzzy subset λ is defined by C $\lambda(x) = C$ $(\lambda(x))$ for all $x \in X$.

Lemma 2.2 [Lemma 2.9, [2]]

Let $C: [0, 1] \to [0, 1]$ be a complement function that satisfies the monotonic and involutive conditions. Then for any family $\{\lambda_{\alpha}: \alpha \in \Delta \}$ of fuzzy subsets of X, we have

(i) \mathbf{C} (sup{ $\lambda_{\alpha}(\mathbf{x})$: $\alpha \in \Delta$ }) = inf{ \mathbf{C} ($\lambda_{\alpha}(\mathbf{x})$): $\alpha \in \Delta$ } = inf{(\mathbf{C} $\lambda_{\alpha}(\mathbf{x})$): $\alpha \in \Delta$ } and

 $\text{(ii) } \mathbf{C} \ \ (\inf\{\lambda_{\alpha}(x): \alpha \in \Delta\}) = \sup\{ \ \mathbf{C} \ \ (\lambda_{\alpha}(x)): \alpha \in \Delta\} = \sup\{ (\ \mathbf{C} \ \ \lambda_{\alpha}(x)): \alpha \in \Delta\} \ \text{for } x \in X.$

Definition 2.3 [Lemma 2.9, [8]]

A complement function **C** is said to satisfy

- (i) the boundary condition if C (0) = 1 and C (1) = 0,
- (ii) monotonic condition if $x \le y \Rightarrow C$ $(x) \ge C$ (y), for all $x, y \in [0, 1]$,

(iii) involutive condition if C(C(x)) = x, for all $x \in [0, 1]$.

The properties of fuzzy complement function C and C λ are given in Klir[8] and Bageerathi et al[2].

Definition 2.4 [Definition 3.1, [2]]

Let (X,τ) be a fuzzy topological space and C be a complement function. Then a fuzzy subset λ of X is fuzzy C -closed in (X,τ) if C λ is fuzzy open in (X,τ) .

Definition 2.5 [Definition 4.1, [2]]

Let (X, τ) be a fuzzy topological space. Then for a fuzzy subset λ of X, the fuzzy \mathbb{C} -closure of λ is defined as the intersection of all fuzzy \mathbb{C} -closed sets μ containing λ . The fuzzy \mathbb{C} -closure of λ is denoted by $Cl_{\mathbb{C}}$ λ that is equal to $\wedge \{\mu: \mu \geq \lambda, \mathbb{C} \mid \mu \in \tau\}$.

Lemma 2.6 [Lemma 4.2, [2]]

If the complement function C satisfies the monotonic and involutive conditions, then for any fuzzy subset λ of X, (i) C ($Int \lambda$) = $Cl_C(C \lambda)$ and (ii) C ($Cl_C\lambda$) = $Int(C \lambda)$.

Lemma 2.7 [Theorem 4.3, [2]]

Let C be a complement function that satisfies the monotonic and involutive conditions. Then for any two fuzzy subsets λ and μ of a fuzzy topological space, we have

- (i) $\lambda \leq Cl_{\rm C} \lambda$,
- (ii) λ is fuzzy C -closed $\Leftrightarrow Cl_{\mathbb{C}} \lambda = \lambda$,
- (iii) $Cl_{\rm C}(Cl_{\rm C}\lambda) = Cl_{\rm C}\lambda$,
- (iv) If $\lambda \leq \mu$ then $Cl_C \lambda \leq Cl_C \mu$,
- (v) $Cl_{C}(\lambda \vee \mu) = Cl_{C}\lambda \vee Cl_{C}\mu$,
- (vi) $Cl_{C}(\lambda \wedge \mu) \leq Cl_{C} \lambda \wedge Cl_{C} \mu$.

Lemma 2.8 [Theorem 4.4, [2]]

Let \mathbb{C} be a complement function that satisfies the monotonic and involutive conditions. For any family $\{\lambda_{\alpha}\}$ of fuzzy sub sets of a fuzzy topological space we have

(i)
$$\vee Cl_{C} \lambda_{\alpha} \leq Cl_{C} (\vee \lambda_{\alpha})$$
 and (ii) $Cl_{C} (\wedge \lambda_{\alpha}) \leq \wedge Cl_{C} \lambda_{\alpha}$.

Lemma 2.9 [Theorem 3.2, [2]]

Let (X,τ) be a fuzzy topological space. Let \mathbb{C} be a complement function that satisfies the boundary, monotonic and involutive conditions. Then the following conditions hold.

(i) 0 and 1 are fuzzy C -closed sets,

ISSN: 2320-0294

- (ii) arbitrary intersection of fuzzy C -closed sets is fuzzy C -closed and
- (iii) finite union of fuzzy C -closed sets is fuzzy C -closed.

Lemma 2.10 [Lemma 2.10, [2]]

Let $C : [0, 1] \to [0, 1]$ be a complement function that satisfies involutive and monotonic conditions. Then for any family $\{\lambda_{\alpha} : \alpha \in \Delta \}$ of fuzzy subsets of X, we have (i) $C(\vee \{\lambda_{\alpha} : \alpha \in \Delta\}) = \wedge \{C \lambda_{\alpha} : \alpha \in \Delta\}$ and (ii) $C(\wedge \{\lambda_{\alpha} : \alpha \in \Delta\}) = \vee \{C \lambda_{\alpha} : \alpha \in \Delta\}$.

Definition 2.11 [Definition 2.15, [3]]

A fuzzy topological space (X, τ) is \mathbb{C} -product related to another fuzzy topological space (Y, σ) if for any fuzzy subset v of X and ζ of Y, whenever \mathbb{C} $\lambda \not\geq v$ and \mathbb{C} $\mu \not\geq \zeta$ imply \mathbb{C} $\lambda \times 1$ \vee $1 \times \mathbb{C}$ $\mu \geq v \times \zeta$, where $\lambda \in \tau$ and $\mu \in \sigma$, there exist $\lambda_1 \in \tau$ and $\mu_1 \in \sigma$ such that \mathbb{C} $\lambda_1 \geq v$ or \mathbb{C} $\mu_1 \geq \zeta$ and \mathbb{C} $\lambda_1 \times 1 \vee 1 \times \mathbb{C}$ $\mu_1 = \mathbb{C}$ $\lambda \times 1 \vee 1 \times \mathbb{C}$ μ .

Lemma 2.12 [Theorem 2.19, [3]]

Let (X, τ) and (Y, σ) be \mathbb{C} -product related fuzzy topological spaces. Then for a fuzzy subset λ of X and a fuzzy subset μ of Y, $Cl_{\mathbb{C}}(\lambda \times \mu) = Cl_{\mathbb{C}}\lambda \times Cl_{\mathbb{C}}\mu$.

Definition 2.13 [Definition 3.1, [5]]

Let (X,τ) be a fuzzy topological space and C be a complement function. Then λ is called fuzzy C-pre open if there exists a $\mu \in \tau$ such that $\mu \le \lambda \le Cl_C \mu$.

Lemma 2.14 [Proposition 6.2, [5]]

Let (X, τ) be a fuzzy topological space and let C be a complement function that satisfies the monotonic and involutive properties. Then for a fuzzy set λ of a fuzzy topological space (X,τ) is fuzzy C - preopen if and only if $\lambda \leq Int(Cl_C\lambda)$.

Definition 2.15 [Definition 6.1[4]]

Let (X,τ) be a fuzzy topological space and C be a complement function. Then a fuzzy subset λ of X is called a fuzzy C -pre closed set of X if Cl_C $(Int(\lambda)) \leq \lambda$.

Lemma 2.16 [Proposition 6.2, [4]]

Let λ be a fuzzy subset of a fuzzy topological space (X,τ) and C be a complement function that satisfies the monotonic and involutive conditions. Then λ is fuzzy C -pre closed if and only if C λ is fuzzy C -pre open.

Lemma 2.17 [Theorem 6.4, [5]]

ISSN: 2320-0294

Let (X, τ) be a fuzzy topological space and ${\bf C}$ be a complement function that satisfies the monotonic and involutive properties. Then the arbitrary union of fuzzy ${\bf C}$ -preopen sets is fuzzy ${\bf C}$ -preopen.

Lemma 2.18 [Theorem 5.39, [5]]

Let (X, τ) and (Y, σ) be the fuzzy topological spaces such that X is ${\bf C}$ -product related to Y. Then the product $\lambda \times \mu$ of a fuzzy ${\bf C}$ -pre open set λ of X and a fuzzy ${\bf C}$ -pre open set μ of Y is fuzzy ${\bf C}$ -pre open of the fuzzy product space $X \times Y$.

Lemma 2.19 [Proposition 3.2, [5]]

Let (X, τ) be a fuzzy topological space and let \mathbb{C} be a complement function that satisfies the monotonic and involutive properties. Then for a fuzzy set λ of a fuzzy topological space (X, τ) is fuzzy \mathbb{C} - semiopen if and only if $\lambda \leq Cl_{\mathbb{C}}(Int \lambda)$.

Lemma 2.20 [Proposition 5.4, [6]]

Let (X, τ) be a fuzzy topological space and \mathbb{C} be a complement function that satisfies the monotonic and involutive conditions. Then for a fuzzy sub set λ of a fuzzy topological space (X, τ) is fuzzy \mathbb{C} -semi closed if and only if $Int(Cl_{\mathbb{C}}(\lambda)) \leq \lambda$.

Lemma 2.21 [Lemma 5.1, [2]]

Suppose f is a function from X to Y. Then f $^{-1}(\mathbf{C} \ \mu) = \mathbf{C} \ (f^{-1}(\mu))$ for any fuzzy subset μ of Y.

Lemma 2.22 [Lemma 2.1, [1]]

Let $f: X \to Y$ be a function. If $\{\lambda_{\alpha}\}$ a family of fuzzy subsets of Y, then

(i)
$$f^{-1}(\vee \lambda_{\alpha}) = \vee f^{-1}(\lambda_{\alpha})$$
 and

(ii)
$$f^{-1}(\wedge \lambda_{\alpha}) = \wedge f^{-1}(\lambda_{\alpha}).$$

3. Fuzzy C - semi pre-open sets

In this section, we introduce the concept of fuzzy ${\bf C}$ - semi pre open sets of a fuzzy topological space using fuzzy ${\bf C}$ -closure operator.

Definition 3.1

Let (X,τ) be a fuzzy topological space and ${\bf C}$ be a complement function. Then a fuzzy subset λ of X is called fuzzy ${\bf C}$ -semi-pre open if there exists a fuzzy ${\bf C}$ - pre open set μ such that $\mu \leq \lambda \leq Cl_C$ μ .

The class of all fuzzy semi-pre open sets coincides with the class of all fuzzy ${\bf C}$ -semi-pre open sets if the standard complement function coincides with the arbitrary complement function.

Proposition 3.2

Let (X, τ) be a fuzzy topological space and let C be a complement function that satisfies the monotonic and involutive conditions. Then a fuzzy subset λ of a fuzzy topological space (X,τ) is fuzzy C -semi-pre open if and only if $\lambda \leq Cl_C$ Int Cl_C λ .

Proof.

Let λ be fuzzy \mathbb{C} -semi-pre open. Then by using Definition 3.1, there exists a fuzzy \mathbb{C} -pre open set μ such that $\mu \leq \lambda \leq Cl_{\mathbb{C}} \mu$. Since \mathbb{C} satisfies the monotonic and involutive condition, by applying Lemma 2.14, $\mu \leq Int$ ($Cl_{\mathbb{C}} \mu$) that implies $\mu \leq \lambda \leq Cl_{\mathbb{C}} \mu \leq Cl_{\mathbb{C}} Int$ ($Cl_{\mathbb{C}} \mu$). Thus we have $\lambda \leq Cl_{\mathbb{C}} Int$ $Cl_{\mathbb{C}} \lambda$.

Conversely, we assume that $\lambda \leq Cl_C$ Int $Cl_C \lambda$. Let $\mu = Int$ $Cl_C \lambda$. Since μ is fuzzy \mathbb{C} - pre open and \mathbb{C} satisfies the monotonic and involutive condition by using Lemma 2.14, $\mu \leq Int$ ($Cl_C \mu$). From the above discussions, we have $\lambda \leq \mu \leq Cl_C(\lambda)$. By using Definition 3.1, λ is fuzzy \mathbb{C} - semi-pre open.

Remark 3.3

It is clear that every fuzzy **C** - semi open set and every fuzzy **C** - pre open set is fuzzy **C** - semi-pre open. But the separate converses are not true as shown by the following example.

Example 3.4

Let $X = \{a, b\}$ and $\tau = \{0, \{a._3, b._8\}, \{a._2, b._5\}, \{a._7, b._{05}\}, \{a._3, b._5\}, \{a._3, b._{05}\}, \{a._2, b._{05}\}, \{a._7, b._8\}, \{a._7, b._8\}, \{a._7, b._5\}, 1\}$. Let $\mathbf{C}(x) = \frac{1-x}{1+2x}$, $0 \le x \le 1$, be the complement function. The family of all fuzzy \mathbf{C} -closed sets $\mathbf{C}(\tau) = \{0, \{a._{4375}, b._{077}\}, \{a._{57}, b._{25}\}, \{a._{125}, b._{86}\}, \{a._{4375}, b._{25}\}, \{a._{4375}, b._{86}\}, \{a._{57}, b._{86}\}, \{a._{125}, b._{077}\}, \{a._{125}, b._{25}\}, 1\}$. Let $\lambda = \{a._3, b._4\}$. Then it can be computed that $Cl_C\lambda = \{a._{4375}, b._{86}\}$ and $Int\ Cl_C\lambda = \{a._3, b._8\}$ and $Cl_C\ Int\ Cl_C\lambda = \{a._{4375}, b._{86}\}$. Thus $\lambda \le Cl_C\ Int\ Cl_C\lambda$.

By using Proposition 3.2, we see that λ is fuzzy \mathbf{C} -semi-pre open.

Also Int $\lambda = \{a._3, b._{05}\}\$ and $Cl_CInt \lambda = \{a._{4375}, b._{077}\}\$ that implies $\lambda \not\leq Cl_CInt \lambda$.

That shows, by using Lemma 2.19, we see that λ is not fuzzy \mathbf{C} -semi open.

Example 3.5

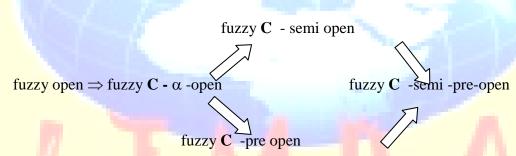
From Example 3.4, let $X = \{a, b\}$ and $\tau = \{0, \{a._3, b._8\}, \{a._2, b._5\}, \{a._7, b._{05}\}, \{a._3, b._5\}, \{a._3, b._{05}\}, \{a._2, b._{05}\}, \{a._7, b._8\}, \{a._7, b._5\}, 1\}$. Let $\lambda = \{a._2, b._{85}\}$. Then it can be computed that Cl_{C} $\lambda = \{a._{4375}, b._{86}\}$ and Int_{C} Cl_{C} $\lambda = \{a._{4375}, b._{86}\}$ and Int_{C} Cl_{C} $\lambda = \{a._{4375}, b._{86}\}$. Thus $\lambda \leq Cl_{C}$ Int_{C} Cl_{C} λ .

By using Proposition 3.2, we see that λ is fuzzy C -semi-pre open.

Also $Cl_C \lambda = \{a.4375, b.86\}$ and $IntCl_C \lambda = \{a.3, b.8\}$ that implies $\lambda \not\leq Int Cl_C \lambda$.

That shows, by Lemma 2.14, we see that λ is not fuzzy \mathbb{C} -pre open.

It is clear from Remark 3.7 [5] and 6.4 [5] that the following diagram of implications is true.



S.S. Thakur and S.Singh[9] established that the intersection of fuzzy semi pre open sets is not a fuzzy semi pre open set. The next example shows that the intersection of any two fuzzy C -semi- pre open sets is not fuzzy C - semi-pre open.

Example 3.5

From Example 3.4, let $X = \{a, b\}$ and $\tau = \{0, \{a._3, b._8\}, \{a._2, b._5\}, \{a._7, b._{05}\}, \{a._3, b._5\}, \{a._3, b._{05}\}, \{a._2, b._{05}\}, \{a._7, b._8\}, \{a._7, b._5\}, 1\}$. Let $\lambda = \{a._2, b._6\}$, it can be found that $Cl_C \lambda = \{a._{4375}, b._{86}\}$, $Int Cl_C \lambda = \{a._3, b._8\}$ and $Cl_C Int Cl_C \lambda = \{a._{4375}, b._{86}\}$. That is $\lambda \leq Cl_C Int Cl_C \lambda$.

And let $\mu = \{a._8, b._{25}\}$, it follows that $Cl_C \mu = \{1\}$, $Int\ Cl_C \mu = \{1\}$ and $Cl_C\ Int\ Cl_C \lambda = \{1\}$ that implies $\mu \le Cl_C\ Int\ Cl_C\ \mu$. Now $\lambda \land \mu = \{a._2, b._{25}\}$, $Cl_C(\lambda \land \mu) = \{a._{4375}, b._{25}\}$, $Int\ Cl_C(\lambda \land \mu) = \{a._{4375}, b._{25}\}$ and $Cl_C\ Int\ Cl_C(\lambda \land \mu) = \{a._{4375}, b._{077}\}$ that implies $\lambda \land \mu \ne Cl_C\ Int\ Cl_C(\lambda \land \mu)$.

By using Proposition 3.2 shows that $\lambda \wedge \mu$ is not fuzzy C -semi -pre open, even though λ and μ are fuzzy C -semi-pre open.

S.S. Thakur and S.Singh[9] established that any union of fuzzy semi-pre open sets is a fuzzy semi-pre open set. The next example shows that the union of any two fuzzy C -semi-pre open sets is not fuzzy C -semi-pre open.

Example 3.6

Let $X = \{a, b, c\}$ and $\tau = \{0, \{a._6, b._3\}, \{b._4, c._6\}, \{a._2, c._5\}, \{b._3\}, \{a._6, b._4, c._6\}, \{a._2, b._4, c._6\}, \{c._5\}, \{a._2\}, \{a._6, b._3, c._5\}, \{a._2, b._3\}, \{a._2, b._3, c._5\}, \{b._3, c._5\}, 1\}.$ Then (X, τ) is a fuzzy topological space. Let $\mathbf{C}(x) = \frac{2x}{1+x}$, $0 \le x \le 1$, be a complement function and \mathbf{C} does not satisfy the monotonic and involutive conditions. The family of all fuzzy \mathbf{C} -closed sets $\mathbf{C}(\tau) = \{0, \{a._{75}, b._{46}\}, \{b._{571}, c._{75}\}, \{a._{33}, c._{667}\}, \{b._{462}\}, \{a._{75}, b._{571}, c._{75}\}, \{a._{33}, b._{57}, c._{75}\}, \{c._{667}\}, \{a._{33}\}, \{a._{75}, b._{462}, c._{667}\}, \{a._{33}, b._{462}\}, \{a._{33}, b._{462}, c._{667}\}, \{b._{462}, c._{667}\}, 1\}.$ Let $\lambda = \{a._{75}, b._{35}\}$, it can be find that $Cl_{\mathbf{C}}\lambda = \{a._{75}, b._{46}\}$, $Int \ Cl_{\mathbf{C}}\lambda = \{a._{6}, b._{3}\}$. and $Cl_{\mathbf{C}}\ Int \ Cl_{\mathbf{C}}\lambda = \{a._{75}, b._{46}\}$. That is $\lambda \le Cl_{\mathbf{C}}\ Int \ Cl_{\mathbf{C}}\lambda$.

Let $\mu = \{b._{45}, c._{75}\}$, it follows that $Cl_C \mu = \{b._{57}, c._{75}\}$, $Int \ Cl_C \mu = \{b._4, c._6\}$ and $Cl_C \ Int \ Cl_C \ \mu = \{b._{571}, c._{75}\}$ that implies $\mu \le Cl_C \ Int \ Cl_C \ \mu$. Now $\lambda \lor \mu = \{a._{75}, b._{45}, c._{75}\}$, $Cl_C \ (\lambda \lor \mu) = \{a._{75}, b._{57}, c._{75}\}$ and

Int $Cl_C(\lambda \vee \mu) = \{a._6, b._4, c._6\}$ and Cl_C Int $Cl_C(\lambda \vee \mu) = \{a._{75}, b._{462}, c._{667}\}$ that implies $\lambda \vee \mu \not\leq Cl_C$ Int $Cl_C(\lambda \vee \mu)$. By using Proposition 3.2, $\lambda \vee \mu$ is not fuzzy \mathbb{C} - semi-pre open, even though λ and μ are fuzzy \mathbb{C} - semi-pre open.

If the complement function C satisfies the monotonic and involutive conditions, then union of two fuzzy C - semi-pre open sets is again fuzzy C - semi-pre open as shown in the next proposition.

Theorem 3.7

Let (X, τ) be a fuzzy topological space and C be a complement function that satisfies the monotonic and involutive conditions. Then the arbitrary union of fuzzy C -semi-pre open sets is fuzzy C -semi-pre open.

Proof

Let $\{\lambda_{\alpha}\}$ be a collection of fuzzy ${\bf C}$ - semi-pre open sets of a fuzzy space X. Then for each α , there exists a fuzzy ${\bf C}$ - pre open set μ_{α} such that $\mu_{\alpha} \le \lambda_{\alpha} \le Cl_{C}(\mu_{\alpha})$. Thus $\vee \mu_{\alpha} \le \vee \lambda_{\alpha} \le \vee Cl_{C}(\mu_{\alpha})$. Since ${\bf C}$ satisfies the monotonic and involutive properties, by using Lemma 2.8, we have $\vee Cl_{C}(\mu_{\alpha}) \le Cl_{C}(\vee \mu_{\alpha})$, that implies $\vee \mu_{\alpha} \le \vee \lambda_{\alpha} \le Cl_{C}(\vee \mu_{\alpha})$. By using Lemma 2.17, we have arbitrary union of fuzzy ${\bf C}$ -pre pen sets is fuzzy ${\bf C}$ - semi-open, that implies $\vee \mu_{\alpha}$ is fuzzy ${\bf C}$ - pre open. By using Definition 3.1, we have $\{\vee \lambda_{\alpha}\}$ is a fuzzy ${\bf C}$ - semi-preopen set.

Proposition 3.8

Let (X, τ) be a fuzzy topological space and C be a complement function that satisfies the monotonic and involutive conditions. If $\lambda \le \mu \le Cl_C$ λ and λ is fuzzy C -semi-pre open in (X, τ) then μ is also such that fuzzy C -semi-pre open in (X, τ)

Proof.

Let v be fuzzy \mathbb{C} -pre open such that $\lambda \le \mu \le Cl_{\mathbb{C}}$ λ . Clearly $v_1 \le \mu$ and $\lambda \le Cl_{\mathbb{C}}$ v implies that $Cl_{\mathbb{C}}$ $v \le Cl_{\mathbb{C}}$ λ . Consequently, $v \le \mu$ $Cl_{\mathbb{C}}$ v. Hence μ is fuzzy \mathbb{C} -semi-pre open in (X, τ) .

Theorem 3.9

Let (X, τ) and (Y, σ) be C -product related fuzzy topological spaces. Then the product λ_1 \times λ_2 of a fuzzy C -semi-pre open set λ_1 of X and a fuzzy C -semi-pre open set λ_2 of Y is a fuzzy C -semi-pre open set of the fuzzy product space $X \times Y$.

Proof.

Let λ_1 be a fuzzy ${\bf C}$ -semi-pre open subset of X and λ_2 be a fuzzy ${\bf C}$ -semi-pre open subset of Y. Then by using Definition 3.1, there exists a ${\bf C}$ -pre open sets μ_1 in X and μ_2 in Y such that $\mu_1 \le \lambda_1 \le Cl_C$ μ_1 and $\mu_2 \le \lambda_2 \le Cl_C$ μ_2 . That implies $\mu_1 \times \mu_2 \le \lambda_1 \times \lambda_2 \le Cl_C$ $\mu_1 \times Cl_C$ μ_2 . By applying Lemma 2.12, $\mu_1 \times \mu_2 \le \lambda_1 \times \lambda_2 \le Cl_C$ ($\mu_1 \times \mu_2$). Again by using Definition 3.1, $\lambda_1 \times \lambda_2$ is a fuzzy ${\bf C}$ -semi pre open set of the fuzzy product space ${\bf X} \times {\bf Y}$.

4. Fuzzy C -semi-pre closed sets

This section is devoted to the concept of fuzzy C -semi-pre closed sets that are defined by using fuzzy C -closure operator.

Definition 4.1

Let (X,τ) be a fuzzy topological space and ${\bf C}$ be a complement function. Then a fuzzy subset λ of X is called fuzzy ${\bf C}$ -semi-pre closed in (X,τ) if there exists a fuzzy ${\bf C}$ -pre closed set μ such that ${\bf C} \ \mu \leq {\bf C} \ \lambda \leq Cl_{\,{\bf C}} \ ({\bf C} \ \mu)$.

Remark 4.2

If
$$\mathbf{C}(\mathbf{x}) = 1 - \mathbf{x}$$
, then $\mathbf{C} \ \mu \le \mathbf{C} \ \lambda \le Cl_{\mathbf{C}}(\mathbf{C} \ \mu) \Rightarrow 1 - \mu \le 1 - \lambda \le \mathbf{C}$ (Int μ)

$$\Rightarrow 1 - \mu \le 1 - \lambda \le 1 - Int \ \mu$$

$$\Rightarrow Int \ \mu \le \lambda \le \mu$$

So, the class of all fuzzy C -semi-pre closed sets coincides with the class of all fuzzy semi-pre closed sets if C(x) = 1-x.

The standard complement of fuzzy semi-pre open is fuzzy semi pre closed. The analogous result is not true for fuzzy **C** -semi-pre open. If the complement function **C** satisfies the involutive condition, then the arbitrary complement of fuzzy **C** -semi-pre open is fuzzy **C** -semi-pre closed.

Proposition 4.3

Let (X, τ) be a fuzzy topological space and C be a complement function. Then

- If λ is fuzzy **C** -semi-pre closed then **C** λ is fuzzy **C** -semi-pre open.
- (ii) If λ is fuzzy C -semi-pre open then C λ is fuzzy C -semi-pre closed provided C satisfies the involutive condition.

Proof.

(i)

Let λ be fuzzy C -semi-pre closed. Then by using Definition 4.1, there exist a fuzzy C - pre closed set μ such that C $\mu \leq$ C $\lambda \leq$ Cl $_C$ (C μ). By replacing C $\mu = \delta$, $\delta \leq$ C $\lambda \leq$ Cl $_C$ (δ). By using Definition 3.1, C λ is fuzzy C -semi-pre open. This proves (i).

Let λ be fuzzy C -semi-pre open. Then by using Definition 3.1, there exists a fuzzy C - pre open η such that $\eta \le \lambda \le Cl_C \eta$. Let $\mu = C \eta$. Since C satisfies the involutive condition, $\eta = C (C \eta) = C \mu$. That is, $C \mu \le C (C \lambda) \le Cl_C (C \mu)$. Thus, $C \lambda$ is fuzzy C -semi-pre closed.

Proposition 4.4

Let (X, τ) be a fuzzy topological space and C be a complement function that satisfies the monotonic and involutive conditions. Then for a fuzzy sub set λ of a fuzzy topological space (X, τ) is fuzzy C -semi-pre closed if and only if $Int\ Cl_C\ Int(\lambda) \le \lambda$.

Proof.

Let λ be fuzzy C -semi-pre closed. Then by using Proposition 4.3, C λ is fuzzy C -semi-pre open that implies C $\lambda \leq Cl_C$ IntCl_C C λ . Taking complement on both sides, we getC (C λ) \leq C

(Cl_C Int Cl_C C λ). Since C satisfies the monotonic and involutive conditions, by applying Lemma 2.6, Int Cl_C Int $\lambda \leq \lambda$.

S.S.Thakur and S.Singh [9] established that any union of fuzzy semi-pre closed sets is not fuzzy semi-pre closed set. However the following example shows that the union of any two fuzzy C -semi pre closed sets is not fuzzy C -semi -pre closed.

Example 4.5

Let $X = \{a, b, c\}$ and $\tau = \{0, \{c._4\}, \{a._7\}, \{a._7, c._4\}, 1\}$. Let $C(x) = \frac{1-x}{1+2x}$, $0 \le x \le 1$, be a complement function. Then the family of all fuzzy C -closed sets is $C(\tau) = \{0, \{a_1, b_1, c._{33}\}, \{a._{125}, b_1, c_1\}, \{a._{125}, b_1, c._{33}\}, 1\}$. Let $\lambda = \{c._4\}$, $\mu = \{a._7\}$ and $\lambda \lor \mu = \{a._7, c._4\}$. Then $Int \lambda = \{c._4\}$, $Cl_C Int \lambda = \{a._{125}, b_1, c_1\}$ and $Int Cl_C Int \lambda = \{c._4\} \le \lambda$. Now $Int \mu = \{c._4\}$, $Cl_C Int \mu = \{a._{125}, b_1, c_1\}$ and $Int Cl_C Int \mu = \{c._4\} \le \mu$. By Proposition 4.4, shows that λ and μ are fuzzy C-semi-pre closed sets. Now, $Int (\lambda \lor \mu) = \{a._7, c._4\}$ $Cl_C Int (\lambda \lor \mu) = \{1\}$ and $Int Cl_C Int (\lambda \lor \mu) = 1 \le \lambda \lor \mu$. By using Proposition 4.4, $\lambda \lor \mu$ is not fuzzy C-semi-pre closed.

S.S.Thakur and S.Singh [9] established that the intersection of fuzzy semi-pre closed sets is fuzzy semi-pre closed. Moreover the following examples shows that the intersection of any two fuzzy C -semi-pre closed sets is not fuzzy C -semi-pre closed.

Example 4.6

Let $X = \{a, b, c\}$ and $\tau = \{0, \{a._6, b._3\}, \{b._4, c._6\}, \{a._2, c._6\}, \{b._3\}, \{a._6, b._4, c._6\}, \{a._2, b._4, c._6\}, \{c._5\}, \{a._2\}, \{a._6, b._3, c._6\}, \{a._2, b._3\}, \{a._2, b._3, c._6\}, \{b._3, c._6\}, 1\}.$ Then (X,τ) is a fuzzy topological space. Let $C(x) = \frac{2x}{1+x}$, $0 \le x \le 1$, be a complement function. The family of all fuzzy C-closed sets $C(\tau) = \{0, \{b._{57}, c._{75}\}, \{a._{75}, b._{46}\}, \{a._{33}, c._{75}\}, \{b._{46}\}, \{a._{75}, b._{57}, c._{75}\}, \{a._{33}\}, \{a._{75}, b._{46}, c._{75}\}, \{a._{33}, b._{46}\}, \{a._{33}, b._{46}, c._{75}\}, \{b._{46}, c._{75}\}, 1\}.$ Let $\lambda = \{a._2, b._3, c._6\}$ and $\mu = \{b._4, c._6\}$. Then it can be calculated that $Int \lambda = \{a._2, b._3, c._6\}, Cl_C Int \lambda = \{a._{33}, b._{46}, c._{75}\}, and <math>Int Cl_C Int \lambda = \{a._2, b._3, c._6\}.$

And $Int \ \mu = \{b._4, c._6\}$, $Cl_C Int \ \mu = \{b._{46}, c._{75}\}$ and $Int \ Cl_C Int \ \mu = \{b._4, c._6\}$. By Proposition 4.4, shows that λ and μ are fuzzy C-semi- pre closed sets. Now, $Int \ \lambda \wedge \mu = \{b._3, c._6\}$ and $Cl_C Int \ (\lambda \wedge \mu) \neq \{b._{46}, c._{75}\}$ and $Int \ Cl_C Int \ (\lambda \wedge \mu) = \{b._4, c._6\} \not\leq (\lambda \wedge \mu)$. By using Proposition 4.4, $\lambda \wedge \mu$ is not fuzzy \mathbb{C} - semi-pre closed.

ISSN: 2320-0294

Remark 4.7

Further, the Example 4.6 shows that the intersection of any two fuzzy C - semi-pre closed sets is not fuzzy C - semi-pre closed, even though the complement function satisfies the monotonic and involutive conditions.

If the complement function C satisfies the monotonic and involutive conditions. Then arbitrary intersection of fuzzy C -semi-pre closed sets is fuzzy C -semi-pre closed as shown in the following proposition.

Proposition 4.8

Let (X, τ) be a fuzzy topological space and C be a complement function that satisfies the monotonic and involutive conditions. Then arbitrary intersection of fuzzy C -semi-pre closed sets is fuzzy C -semi-pre closed.

Proof.

Let $\{\lambda_{\alpha}\}$ be a collection of all fuzzy C -semi-pre closed sets of a fuzzy topological space X. Then for each α , there exists a fuzzy C -pre closed set μ_{α} such that C

 $μ_{\alpha} \le \mathbf{C} \ \lambda_{\alpha} \le Cl_{\mathbf{C}} \ (\mathbf{C} \ \mu_{\alpha}).$ Thus $\lor \mathbf{C} \ \mu_{\alpha} \le \lor \mathbf{C} \ \lambda_{\alpha} \le \lor Cl_{\mathbf{C}} \ (\mathbf{C} \ \mu_{\alpha}).$ Since \mathbf{C} satisfies the monotonic and involutive conditions, by using Lemma 2.8, we have $\lor Cl_{\mathbf{C}} \ (\mathbf{C} \ \mu_{\alpha}) \le Cl_{\mathbf{C}} \ (\lor \mathbf{C} \ \mu_{\alpha}).$ This implies that $\lor \mathbf{C} \ \mu_{\alpha} \le \lor \mathbf{C} \ \lambda_{\alpha} \le Cl_{\mathbf{C}} \ (\lor \mathbf{C} \ \mu_{\alpha}).$ By using Lemma 2.2, $\mathbf{C} \ (\land \mu_{\alpha}) \le \mathbf{C} \ (\land \lambda_{\alpha}) \le Cl_{\mathbf{C}} \ (\lor \mu_{\alpha}).$ By using Lemma 2.17, arbitrary intersection of fuzzy \mathbf{C} -pre closed sets is fuzzy \mathbf{C} -pre closed. Thus we see that $\mathbf{C} \ \mu \le \mathbf{C} \ (\land \lambda_{\alpha}) \le Cl_{\mathbf{C}} \ (\mathbf{C} \ \mu).$ By using Definition 4.1, $\land \lambda_{\alpha}$ is a fuzzy \mathbf{C} -semi-pre closed.

It is clear that every fuzzy C -pre closed set is fuzzy C -semi-pre closed. But the converse is not true as shown by the following example.

Example 4.9

Let
$$X = \{a, b, c\}$$
 and $\tau = \{0, \{a.2, c.5\}, \{b.3\}, \{a.2, b.3, c.5\}, 1\}$.

Let $C(x) = \frac{1-x}{1+3x}$, $0 \le x \le 1$, be a complement function. Then the family of all fuzzy C -closed

sets \mathbf{C} (τ) = {0, {a.₅, b₁, c.₂}, {a₁, b.₃₆, c₁}, {a.₅, b.₃₆, c.₂}, 1}. Let λ = {a.₅, b.₅, c₁}. Then *Int* λ = {a.₂, b.₃, c.₅}, Cl_C *Int* λ = {a.₁, b.₃₆, c₁} and *Int* Cl_C *Int* λ = {a.₂, b.₃, c.₅}. This implies that *Int* Cl_C *Int* λ ≤ λ . By using Proposition 4.4, λ is fuzzy \mathbf{C} - semi-pre closed.

Also Cl_C Int $\lambda = \{a_1, b_{.36}, c_1\} \leq \lambda$, this shows that λ is not fuzzy \mathbb{C} -pre closed.

It is clear that every fuzzy C -semi-closed set is fuzzy C - semi-pre closed. But the converse is not true as shown in the following example.

Example 4.10

From Example 4.9, let $X = \{a, b, c\}$ and $\tau = \{0, \{a._2, c._5\}, \{b._3\}, \{a._2, b._3, c._5\}, 1\}$. Let $\mu = \{a._2, b._6, c._8\}$, it can be computed that $Int \lambda = \{a._2, b._3, c._5\}$, $Cl_C Int \lambda = \{a._5, b._{36}, c_1\}$ and $Int Cl_C Int \lambda = \{a._2, b._3, c._5\}$. This implies that $Int Cl_C Int \lambda \leq \lambda$. By using Proposition 4.4, λ is fuzzy \mathbb{C} - semi-pre closed. Also $Int Cl_C \lambda = \{1\} \nleq \lambda$, this shows that λ is not fuzzy \mathbb{C} - semi-closed.

5. Fuzzy C -semi-pre interior and fuzzy C -semi-pre closure

In this section, we define the concept of fuzzy C -semi-pre interior and fuzzy C -semi-pre closure and investigate some of their basic properties.

Definition 5.1

Let (X,τ) be a fuzzy topological space and C be a complement function. Then for a fuzzy subset λ of X, the fuzzy C -semi-pre interior of λ (briefly $\operatorname{sp} Int_C \lambda$), is the union of all fuzzy C -semi-pre open sets of X contained in λ .

That is, $\operatorname{sp}Int_{\mathbb{C}}(\lambda) = \vee \{\mu; \mu \leq \lambda, \mu \text{ is fuzzy } \mathbb{C} \text{ -semi-pre open} \}.$

Proposition 5.2

Let (X, τ) be a fuzzy topological space and let C be a complement function that satisfies the monotonic and involvtive conditions. Then for any fuzzy subsets λ and μ of a fuzzy topological space X, we have

- (i) Int $\lambda \leq \text{spInt}_{C}\lambda$,
- (ii) $spInt_C\lambda$ is fuzzy **C** -semi-pre open,
- λ is fuzzy **C** -semi-pre open \Leftrightarrow sp $Int_{\rm C} \lambda = \lambda$,
- (iv) $\operatorname{sp}Int_{\mathbb{C}}(\operatorname{sp}Int_{\mathbb{C}}\lambda) = \operatorname{sp}Int_{\mathbb{C}}\lambda,$
- (v) If $\lambda \leq \mu$ then $spInt_C$ $\lambda \leq spInt_C$ μ .

Proof.

(iii)

By using Remark, every fuzzy open set is fuzzy \mathbb{C} -semi-pre open. So, we have $Int \lambda \leq spInt_{\mathbb{C}} \lambda$. This proves (i).

(ii) follows from Definition 5.1.

Let λ be fuzzy \mathbf{C} -semi-pre open. Since $\lambda \leq \lambda$, by Definition 5.1, $\lambda \leq \operatorname{sp} Int_{\mathbf{C}} \lambda$. By using (ii), we get $\operatorname{sp} Int_{\mathbf{C}} \lambda = \lambda$. Conversely we assume that $\operatorname{sp} Int_{\mathbf{C}} \lambda = \lambda$. By using Definition 5.1, λ is fuzzy \mathbf{C} -semi-preopen. Thus (iii) is proved.

By using (iii), we get $spInt_C$ ($sInt_C\lambda$) = $spInt_C\lambda$. This proves (iv).

Since $\lambda \le \mu$, by using (i), $spInt_C$ $\lambda \le \lambda \le \mu$. This implies that $spInt_C$ ($spInt_C$ λ) $\le spInt_C$ μ . By using (iii), we get $spInt_C$ $\lambda \le spInt_C$ μ . This proves (v).

Proposition 5.3

Let (X, τ) be a fuzzy topological space and let \mathbb{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any two fuzzy subsets λ and μ of a fuzzy topological space, we have (i) $\operatorname{sp}Int_{\mathbb{C}}(\lambda \vee \mu) \geq \operatorname{sp}Int_{\mathbb{C}}(\lambda \vee \mu) = \operatorname{sp}Int_{\mathbb{C}}(\lambda \vee \mu) \leq \operatorname{sp}Int_{\mathbb{C}}(\lambda \vee \mu$

Proof.

Since $\lambda \leq \lambda \vee \mu$ and $\mu \leq \lambda \vee \mu$. By using Proposition 5.2(iv), we get $spInt_C\lambda \leq spInt_C$ $(\lambda \vee \mu)$ and $spInt_C \mu \leq spInt_C (\lambda \vee \mu)$. This implies that $spInt_C \lambda \vee spInt_C \mu \leq spInt_C (\lambda \vee \mu)$.

Since $\lambda \wedge \mu \leq \lambda$ and $\lambda \wedge \mu \leq \mu$. By using Proposition 5.2(v), we get $spInt_C(\lambda \wedge \mu) \leq spInt_C$ λ and $spInt_C(\lambda \wedge \mu) \leq spInt_C \mu$. This implies that $sInt_C(\lambda \wedge \mu) \leq spInt_C \lambda \wedge spInt_C \mu$.

Definition 5.4

Let (X,τ) be a fuzzy topological space. Then for a fuzzy subset λ of X, the fuzzy C -semi-pre

closure of λ (briefly sp $Cl_{\mathbb{C}}\lambda$), is the intersection of all fuzzy \mathbb{C} - semi-pre closed sets containing λ .

That is $\operatorname{sp} Cl_{\mathbb{C}} \lambda = \bigwedge \{ \mu : \mu \geq \lambda, \mu \text{ is fuzzy } \mathbb{C} \text{ - semi-pre closed} \}.$

The concepts of "fuzzy C - semi-pre closure" and "fuzzy semi-pre closure" are identical if C is the standard complement function.

Proposition 5.5

If the complement functions \mathbb{C} satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of X, (i) \mathbb{C} (sp $Int_{\mathbb{C}}\lambda$) = sp $Cl_{\mathbb{C}}$ (\mathbb{C} λ) and (ii) \mathbb{C} (sp $Cl_{\mathbb{C}}\lambda$) = sp $Int_{\mathbb{C}}$ (\mathbb{C} λ), where sp $Int_{\mathbb{C}}\lambda$ is the union of all fuzzy \mathbb{C} - semi-pre open sets contained in λ .

Proof.

By Definition 5.1, sp*Int* $_{C}$ $\lambda = \bigvee\{\mu: \mu \leq \lambda, \mu \text{ is fuzzy } \mathbf{C} \text{ - semi-pre open}\}$. Taking complement on both sides, we get \mathbf{C} (sp*Int* $_{C}$ (λ)(x)) = \mathbf{C} (sup{ μ (x): μ (x) $\leq \lambda$ (x), μ is fuzzy \mathbf{C} - semi-pre open}). Since \mathbf{C} satisfies the monotonic and involutive conditions, by using Lemma 2.2, \mathbf{C} (sp*Int* $_{C}$ (λ)(x)) = inf { \mathbf{C} (μ (x)); μ (x) $\leq \lambda$ (x), μ is fuzzy \mathbf{C} - semi-pre open}. By using Definition 2.1, \mathbf{C} (sp*Int* $_{C}$ (λ)(x)) = inf { \mathbf{C} μ (x)): \mathbf{C} μ (x) $\geq \mathbf{C}$ λ (x), μ is fuzzy \mathbf{C} - semi-pre open}. By using Proposition 4.3, \mathbf{C} μ is fuzzy \mathbf{C} - semi-pre closed, by replacing \mathbf{C} μ by η , we see that \mathbf{C} (sp*Int* $_{C}$ (λ)(x)) = inf{ η (x): η (x) \geq \mathbf{C} λ (x), \mathbf{C} η is fuzzy \mathbf{C} - semi-pre open}. By using Definition 5.4, \mathbf{C} (sp*Int* $_{C}$ (λ)(x)) = sp Cl_{C} (\mathbf{C} λ) (x). This proves that \mathbf{C} (sp*Int* $_{C}$ λ).

By using Definition 5.4, $\operatorname{sp}Cl_{\mathbb{C}} \lambda = \wedge \{\mu: \lambda \leq \mu, \mu \text{ is fuzzy } \mathbb{C} - \operatorname{semi-pre closed} \}$. Taking complement on both sides, we get \mathbb{C} ($\operatorname{sp}Cl_{\mathbb{C}} \lambda$ (x)) = \mathbb{C} ($\inf \{\mu(x); \mu(x) \geq \lambda(x): \mu \text{ is fuzzy } \mathbb{C} - \operatorname{semi-pre closed} \}$). Since \mathbb{C} satisfies the monotonic and involutive conditions, by using Lemma 2.2, \mathbb{C} ($\operatorname{sp}Cl_{\mathbb{C}} \lambda(x)$) = $\operatorname{sup} \{ \mathbb{C} (\mu(x)): \mu(x) \geq \lambda (x): \mu \text{ is fuzzy } \mathbb{C} - \operatorname{semi-pre closed} \}$. By Definition 2.1, \mathbb{C} ($\operatorname{sp}Cl_{\mathbb{C}} \lambda(x)$) = $\operatorname{sup} \{ \mathbb{C} \mu(x): \mathbb{C} \mu(x) \leq \mathbb{C} \lambda(x): \mu \text{ is fuzzy } \mathbb{C} - \operatorname{semi-pre closed} \}$. By using Proposition 4.3, \mathbb{C} μ is fuzzy $\mathbb{C} - \operatorname{semi-pre open}$, by replacing \mathbb{C} μ by η , we see that \mathbb{C} ($\operatorname{semi-pre open} \}$). By using Definition 5.1, ($\operatorname{sp}Cl_{\mathbb{C}} \lambda(x)$) = $\operatorname{sp}Int_{\mathbb{C}} (\mathbb{C} \lambda)$ (X). This proves $\mathbb{C} (\operatorname{sp}Cl_{\mathbb{C}} (\lambda)) = \operatorname{sp}Int_{\mathbb{C}} (\mathbb{C} \lambda)$.

Proposition 5.6

Let (X, τ) be a fuzzy topological space and let C be a complement function that satisfies the monotonic and involvtive conditions. Then for the fuzzy subsets λ and μ of a fuzzy topological space X, we have

- (i) $\lambda \leq \operatorname{sp} Cl_{\mathbb{C}} \lambda$,
- (ii) λ is fuzzy C semi-pre closed \Leftrightarrow sp $Cl_C \lambda = \lambda$,
- (iii) $\operatorname{sp}Cl_{C}(\operatorname{sp}Cl_{C}\lambda) = \operatorname{sp}Cl_{C}\lambda,$
- (iv) If $\lambda \leq \mu$ then $\operatorname{sp} Cl_{\mathbb{C}} \lambda \leq \operatorname{sp} Cl_{\mathbb{C}} \mu$.

Proof.

The proof for (i) follows from sp $Cl_{\mathbb{C}} \lambda = \inf\{\mu: \mu \geq \lambda, \mu \text{ is fuzzy } \mathbb{C} \text{ - semi-pre closed}\}.$

Let λ be fuzzy \mathbf{C} - semi-pre closed. Since \mathbf{C} satisfies the monotonic and involvtive conditions. Then by using Proposition 4.3, \mathbf{C} λ is fuzzy \mathbf{C} - semi open. By using Proposition 5.2, $sInt_{\mathbf{C}}(\mathbf{C} \lambda) = \mathbf{C} \lambda$. By using Proposition 5.5, we see that \mathbf{C} (sp $Cl_{\mathbf{C}} \lambda$) = $\mathbf{C} \lambda$. Taking complement on both sides, we get \mathbf{C} (\mathbf{C} (s $Cl_{\mathbf{C}}\lambda$)) = \mathbf{C} (\mathbf{C} λ). Since the complement function \mathbf{C} satisfies the involutive condition, sp $Cl_{\mathbf{C}} \lambda = \lambda$.

Conversely, we assume that $\operatorname{sp}Cl_{\mathbb{C}} \lambda = \lambda$. Taking complement on both sides, we get $\mathbb{C}(\operatorname{sp}Cl_{\mathbb{C}}\lambda) = \mathbb{C}(\lambda) =$

By using Proposition 5.5, \mathbf{C} (sp $Cl_{\mathbf{C}}$ λ) = sp $Int_{\mathbf{C}}$ (\mathbf{C} λ). This implies that \mathbf{C} (sp $Cl_{\mathbf{C}}$ λ) is fuzzy \mathbf{C} - semi-pre open. By using Proposition 4.3, sp $Cl_{\mathbf{C}}$ (λ) is fuzzy \mathbf{C} -semi-closed. By applying (ii), we have sp $Cl_{\mathbf{C}}$ (sp $Cl_{\mathbf{C}}$ λ) = sp $Cl_{\mathbf{C}}$ λ . This proves (iii).

Suppose $\lambda \leq \mu$. Since **C** satisfies the monotonic condition $\mathbf{C} \lambda \geq \mathbf{C} \mu$. This implies that $\mathrm{sp} Int_{\mathbf{C}} \mathbf{C} \lambda \geq \mathrm{sp} Int_{\mathbf{C}} \mathbf{C} \mu$. Taking complement on both sides, we get $\mathrm{C}(\mathrm{sp} Int_{\mathbf{C}} \mathbf{C} \lambda) \leq \mathbf{C} (\mathrm{sp} Int_{\mathbf{C}} \mathbf{C} \mu)$. Then by using Proposition 5.5, $\mathrm{sp} Cl_{\mathbf{C}} \lambda \leq \mathrm{sp} Cl_{\mathbf{C}} \mu$. This proves (iv).

Proposition 5.7

Let (X, τ) be a fuzzy topological space and let C be a complement function that satisfies the monotonic and involutive conditions. Then for any two fuzzy subsets λ and μ of a fuzzy topological space, we have (i) $\operatorname{sp}Cl_C(\lambda\vee\mu) = \operatorname{sp}Cl_C\lambda\vee\operatorname{sp}Cl_C\mu$ and (ii) $\operatorname{sp}Cl_C(\lambda\wedge\mu) \leq \operatorname{sp}Cl_C\lambda\wedge\operatorname{sp}Cl_C\mu$.

Proof.

Since C satisfies the involutive condition, $\operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)=\operatorname{sp}Cl_{\mathbb{C}}(\mathbb{C}((\lambda\vee\mu)))$. Since C satisfies the monotonic and involutive conditions, by using Proposition 5.5, $\operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu))))$. By using Lemma 2.2, we have $\operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\wedge\mathbb{C}(\lambda\vee\mu))))$. Again by using Lemma 2.2, $Cl_{\mathbb{C}}(\lambda\vee\mu)\leq\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\mathbb{C}(\lambda\vee\mu))))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}}(\mathbb{C}(\lambda\vee\mu)))=\mathbb{C}((\operatorname{sp}Int_{\mathbb{C}(\mathbb{C}(\lambda\vee\mu)))=\mathbb$

Proposition 5.5, $\operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu) \leq \operatorname{sp}Cl_{\mathbb{C}}(\lambda) \operatorname{sp}Cl_{\mathbb{C}}(\mu)$. Also $\operatorname{sp}Cl_{\mathbb{C}}(\lambda) \leq \operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)$ and $\operatorname{sp}Cl_{\mathbb{C}}(\mu) \leq \operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)$ that implies $\operatorname{sp}Cl_{\mathbb{C}}(\lambda)\operatorname{sp}Cl_{\mathbb{C}}(\mu) \leq \operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)$. Then it follows that $\operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu) = \operatorname{sp}Cl_{\mathbb{C}}(\lambda\vee\mu)$.

 $\operatorname{sp} Cl_{\operatorname{C}} \lambda \vee \operatorname{sp} Cl_{\operatorname{C}} \mu$. Since $\operatorname{sp} Cl_{\operatorname{C}} (\lambda \wedge \mu) \leq \operatorname{sp} Cl_{\operatorname{C}} \lambda$ and $\operatorname{sp} Cl_{\operatorname{C}} (\lambda \wedge \mu) \leq \operatorname{s} Cl_{\operatorname{C}} \mu$, it follows that $\operatorname{sp} Cl_{\operatorname{C}} (\lambda \wedge \mu) \leq \operatorname{sp} Cl_{\operatorname{C}} \lambda \wedge \operatorname{sp} Cl_{\operatorname{C}} \mu$.

Proposition 5.8

Let \mathbb{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any family $\{\lambda_{\alpha}\}$ of fuzzy subsets of a fuzzy topological space, we have (i) $\vee (\operatorname{sp} Cl_{\mathbb{C}} \lambda_{\alpha})$ $\leq \operatorname{sp} Cl_{\mathbb{C}} (\vee \lambda_{\alpha})$ and (ii) $\operatorname{sp} Cl_{\mathbb{C}} (\wedge \lambda_{\alpha}) \leq \wedge (\operatorname{sp} Cl_{\mathbb{C}} \lambda_{\alpha})$

Proof.

For every β , $\lambda_{\beta} \leq \vee \lambda_{\alpha} \leq \operatorname{sp}Cl_{\mathbb{C}}(\vee \lambda_{\alpha})$. By using Proposition 5.6, $\operatorname{sp}Cl_{\mathbb{C}}\lambda_{\beta} \leq \operatorname{sp}Cl_{\mathbb{C}}(\vee \lambda_{\alpha})$ for every β . This implies that $\vee \operatorname{sp}Cl_{\mathbb{C}}\lambda_{\beta} \leq \operatorname{sp}Cl_{\mathbb{C}}(\vee \lambda_{\alpha})$. This proves (i). Now $\wedge \lambda_{\alpha} \leq \lambda_{\beta}$ for every β . Again using Proposition 5.6, we get $\operatorname{sp}Cl_{\mathbb{C}}(\wedge \lambda_{\alpha}) \leq \operatorname{sp}Cl_{\mathbb{C}}\lambda_{\beta}$. This implies that $\operatorname{sp}Cl_{\mathbb{C}}(\wedge \lambda_{\alpha}) \leq \operatorname{sp}Cl_{\mathbb{C}}\lambda_{\alpha}$. This proves (ii).

6. Fuzzy C- semi-pre continuous functions

This section is devoted to the concept of fuzzy C -semi -pre continuous functions.

Definition 6.1

f: $(X, \tau) \to (Y, \sigma)$ is called fuzzy \mathbb{C} - semi-pre continuous function if $f^{-1}(\mu)$ is a fuzzy \mathbb{C} - semi-pre open set in X for each fuzzy open subset μ in Y.

Proposition 6.2

Let X_1 , X_2 , Y_1 and Y_2 be fuzzy topological spaces such that X_1 is \mathbb{C} -product related to X_2 and $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be functions. If f_1 and f_2 are fuzzy \mathbb{C} - semi-pre continuous then $f_1 \times f_2$ is also a fuzzy \mathbb{C} -semi-pre continuous function.

Proof.

Let λ_{α} and μ_{β} are fuzzy open subsets in Y_1 and Y_2 respectively and let $\lambda = \vee \left(\lambda_{\alpha} \times \mu_{\beta}\right)$ be a fuzzy open set in $Y_1 \times Y_2$. Then by using Lemma 2.21, we have $(f_1 \times f_2)^{-1}(\lambda) = \vee (f_1 \times f_2)^{-1}(\lambda_{\alpha} \times \mu_{\beta}) = \vee [f_1^{-1}(\lambda_{\alpha}) \times f_2^{-1}(\mu_{\beta})]$. Since f_1 and f_2 are fuzzy \mathbf{C} -semi-pre continuous, by using Definition 6.1, $f_1^{-1}(\lambda_{\alpha})$ and $f_2^{-1}(\mu_{\beta})$ are fuzzy \mathbf{C} -sem-pre open sets. Also by using Theorem 3.9, $f_1^{-1}(\lambda_{\alpha}) \times f_2^{-1}(\mu_{\beta})$ is a fuzzy \mathbf{C} -semi-pre open set and since arbitrary union of fuzzy \mathbf{C} -semi-pre open sets is fuzzy \mathbf{C} -semi-pre open, $\vee (f_1^{-1}(\lambda_{\alpha}) \times f_2^{-1}(\mu_{\beta}))$ is fuzzy \mathbf{C} -semi-pre open. This shows that $(f_1 \times f_2)^{-1}(\mu_{\beta})$

(λ) is fuzzy ${\bf C}$ -semi -pre open. By using Definition 6.1, ($f_1 \times f_2$) is fuzzy ${\bf C}$ -semi-pre continuous function.

Proposition 6.3

Let $f: (X, \tau) \to (Y, \sigma)$ be a function and $g: X \to X \times Y$ be the graph of f. If g is fuzzy C -semi -pre continuous then f is also fuzzy C -semi -pre continuous.

Proof.

Let μ be a fuzzy open set in Y. Since $f^{-1}(\mu) = 1 \wedge f^{-1}(\mu) = g^{-1}(1 \times \mu)$, g is a fuzzy C -semi-pre continuous and $1 \times \mu$ is a fuzzy open set in X×Y, $f^{-1}(\mu)$ is a fuzzy C -semi-pre open set of X. By using Definition 6.1, f is a fuzzy C -semi-pre continuous function.

References

- [1] K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, *J.Math.Anal.Appl.*82 (1) (1981), 14-32.
- [2] K.Bageerathi, G.Sutha, P.Thangavelu, A generalization of fuzzy closed sets, *International Journal of fuzzy systems and rough systems*, 4(1) (2011), 1-5.
- [3] K.Bageerathi, P.Thangavelu, A generalization of fuzzy Boundary, *International Journal of Mathematical Archive* 1(3)(2010), 73-80.
- [4] K.Bageerathi, P.Thangavelu, On nearly fuzzy C-closed sets in fuzzy topological Spaces Advances in Theoretical and Applied Sciences 6(5)(2011), 617-633. (ISSN 0973 4554).
- [5] On generalization of nearly fuzzy open sets, Proceedings of the International Seminar On New Trends in Applications of Mathematics (ISNTAM 2011) Bharata Mata College, Kerala, Jan 31, Feb 1-2(2011). (**To appear**).
- [6] A. S. Bin shahana,On fuzzy strong semi-continuity and fuzzy pre continuity, *Fuzzy sets and systems*, 44 (1991), 303-308.
 - [7] C.L.Chang, Fuzzy topological space, *J.Math.Anal.Appl.*24 (1968), 182-190.
- [8] George J.Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, *Prentice Hall, Inc*, 2005.
- [9] S. S. Thakur, S. Singh, On fuzzy semi-preopen sets and fuzzy semi-pre continuity, *Fuzzy sets* and systems, 98 (1998), 383-391.